Time: Three hours

flow.

(a)

(b)

duct when it act as a

Nozzle

Diffuser.

Define propulsive efficiency.

3.

7.

10.

PART B —	$(5 \times$	16 =	80	marks))
----------	-------------	------	----	--------	---

			PART B — $(5 \times 16 = 80 \text{ marks})$	_
11.	(a)	Ana	air jet (γ = 1.4, R 287 J / kg K) at 400 K has sonic velocity. Determine	e
11.	(α)			\
		(i)	Velocity of sound at 400 K,	
		(ii)	Velocity of sound at the stagnation conditions,)
	ь.	(iii)	Maximum velocity of the jet,	<i>V</i>
		(iv)	Stagnation enthalpy.	0
		(v)	Crocco number. (1	6,
	(b)	(i)	Air ($\gamma=1.4$, R = 287 J/kg K) enters a straight axis symmetric du at 300 K, 3.45 bar and 150 m/s and leaves it at 277 K, 2.058 bar ar 260 m/s. The area of cross section at entry is 500 cm ² . Assumir adiabatic flow determine	10
			(1) Stagnation temperature,	
			(2) Maximum velocity,	
			(3) Mass flow rate, (4) Area of cross section at exit. (1)	2)
		(ii)	Show that $T_0/T = (1 + (\gamma - \frac{1}{2}) M^2)$	4)
12.	(a)	0.44	nical air diffuser has an inlet area 0.11 m ² and an exit area m ² . Air enters the diffuser with a static pressure of 0.18 Mpa, state erature of 37°C and velocity of 267 m/s, Calculate	of ic
		(i)	The mass flow rate of air through the diffuser,	
		(ii)	The Mach number, static temperature and static pressure of the aleaving diffuser and	ir
		(iii)	The net thrust acting upon the diffuser due to diffusion. (16	3)
			Or	
	(b)	An a	ir nozzle is to be designed for an exit Mach number of 3.5. Th	ie

- stagnation conditions for the isentropic flow are 800 kpa and 240°C. Estimate pressure, temperature, velocity and area at throat and exit for (16)a mass flow rate of 3.5 kg/s.
- A circular duct passes 8.25 kg/s of air at an exit Mach number of 0.5. The 13/ (a) entry pressure and temperature are 3.5 bar and 38°C respectively and coefficient of friction is 0.005. If the Mach number at entry is 0.15, determine

	(ii)) Length of the c	luct,	A Miller of the A	Calley 1	
	(iii	i) Pressure and t	emperature at t	he exit,		
	(iv) Stagnation pre	ssure loss.		487	(16)
			Or			
1	sec res pro	r is flowing in an iction downstream sult of friction. Whoperties at inlet are essure at exit. Find	entropy is great hat is the Mack te 700 kpa and	er by an amount n number at this 30°C. Find veloc	0.124 k J/ks section? Th	g K as a le static
14. (in	convergent diverge which the pressur mber at exit of 2.5	e is 800 kpa and	l temperature is	40°C to give	
	(i)	Mass flow rate,				
	(ii)	Exit area,				
	(iii)			and temperature		area is (16)
			Or	7		
(k	syn	oblique shock wav nmetrical wedge. A 300 K and upstream	ir has a Mach r	umber of 2.1 up	stream tempe	erature
	(i)	Downstream pre	essure,			
	(ii)	Down stream te	mperature,			
	(iii)	Wedge angle,				
	(iv)	Downstream Ma	ch number.			(16)
15. (a) (i)	With neat sketch out the advantage				
	(ii)	Explain the wor	king of Turbo p	ropeller Engine.		(4)
	1		Or			
(1)	unifo	urbojet engine tak form flight speed o 88 kJ/kg and ve 6. Combustion e 00 kJ/kg. Find out	f 880 km/hr. Ise elocity coefficient efficiency is 9	entropic enthalp;	y change for t fuel air ra	nozzle itio is
			3		1	3059
` `						

Diameter of the duct,

- (i) Thermal efficiency of the engine,
- (ii) Fuel flow in kg/hr.
- (iii) Propulsive efficiency, and
- (iv) Overall efficiency.

(16)